
1

All Packages Class Hierarchy Index

package java.io

DataInput

DataOutput

FilenameFilter

BufferedInputStream

BufferedOutputStream

ByteArrayInputStream

ByteArrayOutputStream

DataInputStream

DataOutputStream

File

FileDescriptor

FileInputStream

FileOutputStream

FilterInputStream

FilterOutputStream

InputStream

LineNumberInputStream

OutputStream

PipedInputStream

PipedOutputStream

PrintStream

PushbackInputStream

RandomAccessFile

SequenceInputStream

StreamTokenizer

StringBufferInputStream

EOFException

FileNotFoundException

2

IOException

InterruptedIOException

UTFDataFormatException

3

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.BufferedInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.FilterInputStream
 |
 +−−−−java.io.BufferedInputStream

public class BufferedInputStream

extends FilterInputStream

A buffered input stream. This stream lets you read in characters from a stream without

causing a read every time. The data is read into a buffer, subsequent reads result in a

fast buffer access.

 buf

The buffer where data is stored.

 count

The number of bytes in the buffer.

 marklimit

The maximum readahead allowed after a mark() before subsequent calls to reset()

fail.

 markpos

The position in the buffer of the current mark.

 pos

The current position in the buffer.

 BufferedInputStream(InputStream)

Creates a new buffered stream with a default buffer size.

 BufferedInputStream(InputStream, int)

Creates a new buffered stream with the specified buffer size.

4

 available()

Returns the number of bytes that can be read without blocking.

 mark(int)

Marks the current position in the input stream.

 markSupported()

Returns a boolean indicating if this stream type supports mark/reset.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads into an array of bytes.

 reset()

Repositions the stream to the last marked position.

 skip(long)

Skips n bytes of input.

 buf

 protected byte buf[]

The buffer where data is stored.

 count

 protected int count

The number of bytes in the buffer.

 pos

 protected int pos

The current position in the buffer.

 markpos

 protected int markpos

The position in the buffer of the current mark. This mark is set to −1 if there is no

current mark.

 marklimit

5

 protected int marklimit

The maximum readahead allowed after a mark() before subsequent calls to reset()

fail.

 BufferedInputStream

 public BufferedInputStream(InputStream in)

Creates a new buffered stream with a default buffer size.

Parameters:

in − the input stream

 BufferedInputStream

 public BufferedInputStream(InputStream in,
 int size)

Creates a new buffered stream with the specified buffer size.

Parameters:

in − the input stream

size − the buffer size

 read

 public synchronized int read() throws IOException

Reads a byte of data. This method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 read

 public synchronized int read(byte b[],
 int off,
 int len) throws IOException

6

Reads into an array of bytes. Blocks until some input is available.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 skip

 public synchronized long skip(long n) throws IOException

Skips n bytes of input.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Throws:IOException

If an I/O error has occurred.

Overrides:

skip in class FilterInputStream

 available

 public synchronized int available() throws IOException

Returns the number of bytes that can be read without blocking. This total is the

number of bytes in the buffer and the number of bytes available from the input

stream.

Returns:

the number of available bytes.

Overrides:

available in class FilterInputStream

 mark

 public synchronized void mark(int readlimit)

Marks the current position in the input stream. A subsequent call to the reset()

method will reposition the stream at the last marked position so that subsequent

reads will re−read the same bytes. The stream promises to allow readlimit bytes to

be read before the mark position gets invalidated.

Parameters:

readlimit − the maximum limit of bytes allowed to be read before the mark

7

position becomes invalid.

Overrides:

mark in class FilterInputStream

 reset

 public synchronized void reset() throws IOException

Repositions the stream to the last marked position. If the stream has not been

marked, or if the mark has been invalidated, an IOException is thrown. Stream

marks are intended to be used in situations where you need to read ahead a little

to see what’s in the stream. Often this is most easily done by invoking some

general parser. If the stream is of the type handled by the parser, it just chugs

along happily. If the stream is not of that type, the parser should toss an exception

when it fails. If an exception gets tossed within readlimit bytes, the parser will

allow the outer code to reset the stream and to try another parser.

Throws:IOException

If the stream has not been marked or if the mark has been invalidated.

Overrides:

reset in class FilterInputStream

 markSupported

 public boolean markSupported()

Returns a boolean indicating if this stream type supports mark/reset.

Overrides:

markSupported in class FilterInputStream

All Packages Class Hierarchy This Package Previous Next Index

8

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.BufferedOutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.FilterOutputStream
 |
 +−−−−java.io.BufferedOutputStream

public class BufferedOutputStream

extends FilterOutputStream

A buffered output stream. This stream lets you write characters to a stream without

causing a write every time. The data is first written into a buffer. Data is written to the

actual stream only when the buffer is full, or when the stream is flushed.

 buf

The buffer where data is stored.

 count

The number of bytes in the buffer.

 BufferedOutputStream(OutputStream)

Creates a new buffered stream with a default buffer size.

 BufferedOutputStream(OutputStream, int)

Creates a new buffered stream with the specified buffer size.

 flush()

Flushes the stream.

 write(int)

Writes a byte.

9

 write(byte[], int, int)

Writes a subarray of bytes.

 buf

 protected byte buf[]

The buffer where data is stored.

 count

 protected int count

The number of bytes in the buffer.

 BufferedOutputStream

 public BufferedOutputStream(OutputStream out)

Creates a new buffered stream with a default buffer size.

Parameters:

out − the output stream

 BufferedOutputStream

 public BufferedOutputStream(OutputStream out,
 int size)

Creates a new buffered stream with the specified buffer size.

Parameters:

out − the output stream

size − the buffer size

 write

 public synchronized void write(int b) throws IOException

Writes a byte. This method will block until the byte is actually written.

10

Parameters:

b − the byte to be written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class FilterOutputStream

 write

 public synchronized void write(byte b[],
 int off,
 int len) throws IOException

Writes a subarray of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class FilterOutputStream

 flush

 public synchronized void flush() throws IOException

Flushes the stream. This will write any buffered output bytes.

Throws:IOException

If an I/O error has occurred.

Overrides:

flush in class FilterOutputStream

All Packages Class Hierarchy This Package Previous Next Index

11

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.ByteArrayInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.ByteArrayInputStream

public class ByteArrayInputStream

extends InputStream

This class implements a buffer that can be used as an InputStream.

 buf

The buffer where data is stored.

 count

The number of characters to use in the buffer.

 pos

The current position in the buffer.

 ByteArrayInputStream(byte[])

Creates an ByteArrayInputStream from the specified array of bytes.

 ByteArrayInputStream(byte[], int, int)

Creates an ByteArrayInputStream from the specified array of bytes.

 available()

Returns the number of available bytes in the buffer.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads into an array of bytes.

12

 reset()

Resets the buffer to the beginning.

 skip(long)

Skips n bytes of input.

 buf

 protected byte buf[]

The buffer where data is stored.

 pos

 protected int pos

The current position in the buffer.

 count

 protected int count

The number of characters to use in the buffer.

 ByteArrayInputStream

 public ByteArrayInputStream(byte buf[])

Creates an ByteArrayInputStream from the specified array of bytes.

Parameters:

buf − the input buffer (not copied)

 ByteArrayInputStream

 public ByteArrayInputStream(byte buf[],
 int offset,
 int length)

Creates an ByteArrayInputStream from the specified array of bytes.

Parameters:

buf − the input buffer (not copied)

offset − the offset of the first byte to read

length − the number of bytes to read

13

 read

 public synchronized int read()

Reads a byte of data.

Returns:

the byte read, or −1 if the end of the stream is reached.

Overrides:

read in class InputStream

 read

 public synchronized int read(byte b[],
 int off,
 int len)

Reads into an array of bytes.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read; −1 is returned when the end of the stream

is reached.

Overrides:

read in class InputStream

 skip

 public synchronized long skip(long n)

Skips n bytes of input.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Overrides:

skip in class InputStream

 available

 public synchronized int available()

Returns the number of available bytes in the buffer.

Overrides:

available in class InputStream

14

 reset

 public synchronized void reset()

Resets the buffer to the beginning.

Overrides:

reset in class InputStream

All Packages Class Hierarchy This Package Previous Next Index

15

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.ByteArrayOutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.ByteArrayOutputStream

public class ByteArrayOutputStream

extends OutputStream

This class implements a buffer that can be used as an OutputStream. The buffer

automatically grows when data is written to the stream. The data can be retrieved using

toByteArray() and toString().

 buf

The buffer where data is stored.

 count

The number of bytes in the buffer.

 ByteArrayOutputStream()

Creates a new ByteArrayOutputStream.

 ByteArrayOutputStream(int)

Creates a new ByteArrayOutputStream with the specified initial size.

 reset()

Resets the buffer so that you can use it again without throwing away the already

allocated buffer.

 size()

Returns the current size of the buffer.

16

 toByteArray()

Returns a copy of the input data.

 toString()

Converts input data to a string.

 toString(int)

Converts input data to a string.

 write(int)

Writes a byte to the buffer.

 write(byte[], int, int)

Writes bytes to the buffer.

 writeTo(OutputStream)

Writes the contents of the buffer to another stream.

 buf

 protected byte buf[]

The buffer where data is stored.

 count

 protected int count

The number of bytes in the buffer.

 ByteArrayOutputStream

 public ByteArrayOutputStream()

Creates a new ByteArrayOutputStream.

 ByteArrayOutputStream

 public ByteArrayOutputStream(int size)

Creates a new ByteArrayOutputStream with the specified initial size.

Parameters:

size − the initial size

17

 write

 public synchronized void write(int b)

Writes a byte to the buffer.

Parameters:

b − the byte

Overrides:

write in class OutputStream

 write

 public synchronized void write(byte b[],
 int off,
 int len)

Writes bytes to the buffer.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Overrides:

write in class OutputStream

 writeTo

 public synchronized void writeTo(OutputStream out) throws IOException

Writes the contents of the buffer to another stream.

Parameters:

out − the output stream to write to

 reset

 public synchronized void reset()

Resets the buffer so that you can use it again without throwing away the already

allocated buffer.

 toByteArray

 public synchronized byte[] toByteArray()

Returns a copy of the input data.

18

 size

 public int size()

Returns the current size of the buffer.

 toString

 public String toString()

Converts input data to a string.

Returns:

the string.

Overrides:

toString in class Object

 toString

 public String toString(int hibyte)

Converts input data to a string. The top 8 bits of each 16 bit Unicode character are

set to hibyte.

Parameters:

hibyte − the bits set

All Packages Class Hierarchy This Package Previous Next Index

19

All Packages Class Hierarchy This Package Previous Next Index

Interface java.io.DataInput

public interface DataInput

extends Object

DataInput is an interface describing streams that can read input in a

machine−independent format.

See Also:

DataInputStream, DataOutput

 readBoolean()

Reads in a boolean.

 readByte()

Reads an 8 bit byte.

 readChar()

Reads a 16 bit char.

 readDouble()

Reads a 64 bit double.

 readFloat()

Reads a 32 bit float.

 readFully(byte[])

Reads bytes, blocking until all bytes are read.

 readFully(byte[], int, int)

Reads bytes, blocking until all bytes are read.

 readInt()

Reads a 32 bit int.

 readLine()

 readLong()

Reads a 64 bit long.

 readShort()

Reads a 16 bit short.

 readUTF()

 readUnsignedByte()

Reads an unsigned 8 bit byte.

 readUnsignedShort()

Reads an unsigned 16 bit short.

 skipBytes(int)

Skips bytes, block until all bytes are skipped.

20

 readFully

 public abstract void readFully(byte b[]) throws IOException

Reads bytes, blocking until all bytes are read.

Parameters:

b − the buffer into which the data is read

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readFully

 public abstract void readFully(byte b[],
 int off,
 int len) throws IOException

Reads bytes, blocking until all bytes are read.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes to read

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 skipBytes

 public abstract int skipBytes(int n) throws IOException

Skips bytes, block until all bytes are skipped.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readBoolean

 public abstract boolean readBoolean() throws IOException

21

Reads in a boolean.

Returns:

the boolean read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readByte

 public abstract byte readByte() throws IOException

Reads an 8 bit byte.

Returns:

the 8 bit byte read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readUnsignedByte

 public abstract int readUnsignedByte() throws IOException

Reads an unsigned 8 bit byte.

Returns:

the 8 bit byte read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readShort

 public abstract short readShort() throws IOException

Reads a 16 bit short.

Returns:

the 16 bit short read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readUnsignedShort

 public abstract int readUnsignedShort() throws IOException

Reads an unsigned 16 bit short.

22

Returns:

the 16 bit short read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readChar

 public abstract char readChar() throws IOException

Reads a 16 bit char.

Returns:

the 16 bit char read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readInt

 public abstract int readInt() throws IOException

Reads a 32 bit int.

Returns:

the 32 bit integer read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readLong

 public abstract long readLong() throws IOException

Reads a 64 bit long.

Returns:

the read 64 bit long.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readFloat

 public abstract float readFloat() throws IOException

Reads a 32 bit float.

Returns:

23

the 32 bit float read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readDouble

 public abstract double readDouble() throws IOException

Reads a 64 bit double.

Returns:

the 64 bit double read.

Throws:EOFException

If end of file is reached.

Throws:IOException

If other I/O error has occurred.

 readLine

 public abstract String readLine() throws IOException

 readUTF

 public abstract String readUTF() throws IOException

All Packages Class Hierarchy This Package Previous Next Index

24

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.DataInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.FilterInputStream
 |
 +−−−−java.io.DataInputStream

public class DataInputStream

extends FilterInputStream

implements DataInput

A data input stream that lets you read primitive Java data types from a stream in a

portable way. Primitive data types are well understood types with associated operations.

For example, Integers are considered primitive data types.

See Also:

DataOutputStream

 DataInputStream(InputStream)

Creates a new DataInputStream.

 read(byte[])

Reads data into an array of bytes.

 read(byte[], int, int)

Reads data into an array of bytes.

 readBoolean()

Reads a boolean.

 readByte()

Reads an 8 bit byte.

 readChar()

Reads a 16 bit char.

25

 readDouble()

Reads a 64 bit double.

 readFloat()

Reads a 32 bit float.

 readFully(byte[])

Reads bytes, blocking until all bytes are read.

 readFully(byte[], int, int)

Reads bytes, blocking until all bytes are read.

 readInt()

Reads a 32 bit int.

 readLine()

Reads in a line that has been terminated by a \n, \r, \r\n or EOF.

 readLong()

Reads a 64 bit long.

 readShort()

Reads a 16 bit short.

 readUTF()

Reads a UTF format String.

 readUTF(DataInput)

Reads a UTF format String from the given input stream.

 readUnsignedByte()

Reads an unsigned 8 bit byte.

 readUnsignedShort()

Reads 16 bit short.

 skipBytes(int)

Skips bytes, blocks until all bytes are skipped.

 DataInputStream

 public DataInputStream(InputStream in)

Creates a new DataInputStream.

Parameters:

in − the input stream

 read

 public final int read(byte b[]) throws IOException

Reads data into an array of bytes. This method blocks until some input is

available.

Parameters:

26

b − the buffer into which the data is read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 read

 public final int read(byte b[],
 int off,
 int len) throws IOException

Reads data into an array of bytes. This method blocks until some input is

available.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 readFully

 public final void readFully(byte b[]) throws IOException

Reads bytes, blocking until all bytes are read.

Parameters:

b − the buffer into which the data is read

Throws:IOException

If an I/O error has occurred.

Throws:EOFException

If EOF reached before all bytes are read.

 readFully

 public final void readFully(byte b[],
 int off,
 int len) throws IOException

Reads bytes, blocking until all bytes are read.

Parameters:

b − the buffer into which the data is read

27

off − the start offset of the data

len − the maximum number of bytes read

Throws:IOException

If an I/O error has occurred.

Throws:EOFException

If EOF reached before all bytes are read.

 skipBytes

 public final int skipBytes(int n) throws IOException

Skips bytes, blocks until all bytes are skipped.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Throws:IOException

If an I/O error has occurred.

 readBoolean

 public final boolean readBoolean() throws IOException

Reads a boolean.

Returns:

the boolean read.

 readByte

 public final byte readByte() throws IOException

Reads an 8 bit byte.

Returns:

the 8 bit byte read.

 readUnsignedByte

 public final int readUnsignedByte() throws IOException

Reads an unsigned 8 bit byte.

Returns:

the 8 bit byte read.

 readShort

 public final short readShort() throws IOException

Reads a 16 bit short.

Returns:

28

the 16 bit short read.

 readUnsignedShort

 public final int readUnsignedShort() throws IOException

Reads 16 bit short.

Returns:

the 16 bit short read.

 readChar

 public final char readChar() throws IOException

Reads a 16 bit char.

Returns:

the read 16 bit char.

 readInt

 public final int readInt() throws IOException

Reads a 32 bit int.

Returns:

the 32 bit integer read.

 readLong

 public final long readLong() throws IOException

Reads a 64 bit long.

Returns:

the 64 bit long read.

 readFloat

 public final float readFloat() throws IOException

Reads a 32 bit float.

Returns:

the read 32 bit float.

 readDouble

 public final double readDouble() throws IOException

Reads a 64 bit double.

Returns:

the 64 bit double read.

29

 readLine

 public final String readLine() throws IOException

Reads in a line that has been terminated by a \n, \r, \r\n or EOF.

Returns:

a String copy of the line.

 readUTF

 public final String readUTF() throws IOException

Reads a UTF format String.

Returns:

the String.

 readUTF

 public final static String readUTF(DataInput in) throws IOException

Reads a UTF format String from the given input stream.

Returns:

the String.

All Packages Class Hierarchy This Package Previous Next Index

30

All Packages Class Hierarchy This Package Previous Next Index

Interface java.io.DataOutput

public interface DataOutput

extends Object

DataOutput is an interface describing streams that can write output in a

machine−independent format.

See Also:

DataOutputStream, DataInput

 write(int)

Writes a byte.

 write(byte[])

Writes an array of bytes.

 write(byte[], int, int)

Writes a subarray of bytes.

 writeBoolean(boolean)

Writes a boolean.

 writeByte(int)

Writes an 8 bit byte.

 writeBytes(String)

Writes a String as a sequence of bytes.

 writeChar(int)

Writes a 16 bit char.

 writeChars(String)

Writes a String as a sequence of chars.

 writeDouble(double)

Writes a 64 bit double.

 writeFloat(float)

Writes a 32 bit float.

 writeInt(int)

Writes a 32 bit int.

 writeLong(long)

Writes a 64 bit long.

 writeShort(int)

Writes a 16 bit short.

 writeUTF(String)

Writes a String in UTF format.

31

 write

 public abstract void write(int b) throws IOException

Writes a byte. Will block until the byte is actually written.

Parameters:

b − the byte to be written

Throws:IOException

If an I/O error has occurred.

 write

 public abstract void write(byte b[]) throws IOException

Writes an array of bytes.

Parameters:

b − the data to be written

Throws:IOException

If an I/O error has occurred.

 write

 public abstract void write(byte b[],
 int off,
 int len) throws IOException

Writes a subarray of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

 writeBoolean

 public abstract void writeBoolean(boolean v) throws IOException

Writes a boolean.

Parameters:

v − the boolean to be written

 writeByte

 public abstract void writeByte(int v) throws IOException

32

Writes an 8 bit byte.

Parameters:

v − the byte value to be written

 writeShort

 public abstract void writeShort(int v) throws IOException

Writes a 16 bit short.

Parameters:

v − the short value to be written

 writeChar

 public abstract void writeChar(int v) throws IOException

Writes a 16 bit char.

Parameters:

v − the char value to be written

 writeInt

 public abstract void writeInt(int v) throws IOException

Writes a 32 bit int.

Parameters:

v − the integer value to be written

 writeLong

 public abstract void writeLong(long v) throws IOException

Writes a 64 bit long.

Parameters:

v − the long value to be written

 writeFloat

 public abstract void writeFloat(float v) throws IOException

Writes a 32 bit float.

Parameters:

v − the float value to be written

 writeDouble

 public abstract void writeDouble(double v) throws IOException

Writes a 64 bit double.

33

Parameters:

v − the double value to be written

 writeBytes

 public abstract void writeBytes(String s) throws IOException

Writes a String as a sequence of bytes.

Parameters:

s − the String of bytes to be written

 writeChars

 public abstract void writeChars(String s) throws IOException

Writes a String as a sequence of chars.

Parameters:

s − the String of chars to be written

 writeUTF

 public abstract void writeUTF(String str) throws IOException

Writes a String in UTF format.

Parameters:

str − the String in UTF format

All Packages Class Hierarchy This Package Previous Next Index

34

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.DataOutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.FilterOutputStream
 |
 +−−−−java.io.DataOutputStream

public class DataOutputStream

extends FilterOutputStream

implements DataOutput

This class lets you write primitive Java data types to a stream in a portable way.

Primitive data types are well understood types with associated operations. For example,

an Integer is considered to be a good primitive data type. The data can be converted back

using a DataInputStream.

 written

The number of bytes written so far.

 DataOutputStream(OutputStream)

Creates a new DataOutputStream.

 flush()

Flushes the stream.

 size()

Returns the number of bytes written.

 write(int)

Writes a byte.

35

 write(byte[], int, int)

Writes a sub array of bytes.

 writeBoolean(boolean)

Writes a boolean.

 writeByte(int)

Writes an 8 bit byte.

 writeBytes(String)

Writes a String as a sequence of bytes.

 writeChar(int)

Writes a 16 bit char.

 writeChars(String)

Writes a String as a sequence of chars.

 writeDouble(double)

Writes a 64 bit double.

 writeFloat(float)

Writes a 32 bit float.

 writeInt(int)

Writes a 32 bit int.

 writeLong(long)

Writes a 64 bit long.

 writeShort(int)

Writes a 16 bit short.

 writeUTF(String)

Writes a String in UTF format.

 written

 protected int written

The number of bytes written so far.

 DataOutputStream

 public DataOutputStream(OutputStream out)

Creates a new DataOutputStream.

Parameters:

out − the output stream

36

 write

 public synchronized void write(int b) throws IOException

Writes a byte. Will block until the byte is actually written.

Parameters:

b − the byte to be written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class FilterOutputStream

 write

 public synchronized void write(byte b[],
 int off,
 int len) throws IOException

Writes a sub array of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class FilterOutputStream

 flush

 public void flush() throws IOException

Flushes the stream. This will write any buffered output bytes.

Throws:IOException

If an I/O error has occurred.

Overrides:

flush in class FilterOutputStream

 writeBoolean

 public final void writeBoolean(boolean v) throws IOException

Writes a boolean.

Parameters:

v − the boolean to be written

37

 writeByte

 public final void writeByte(int v) throws IOException

Writes an 8 bit byte.

Parameters:

v − the byte value to be written

 writeShort

 public final void writeShort(int v) throws IOException

Writes a 16 bit short.

Parameters:

v − the short value to be written

 writeChar

 public final void writeChar(int v) throws IOException

Writes a 16 bit char.

Parameters:

v − the char value to be written

 writeInt

 public final void writeInt(int v) throws IOException

Writes a 32 bit int.

Parameters:

v − the integer value to be written

 writeLong

 public final void writeLong(long v) throws IOException

Writes a 64 bit long.

Parameters:

v − the long value to be written

 writeFloat

 public final void writeFloat(float v) throws IOException

Writes a 32 bit float.

Parameters:

v − the float value to be written

38

 writeDouble

 public final void writeDouble(double v) throws IOException

Writes a 64 bit double.

Parameters:

v − the double value to be written

 writeBytes

 public final void writeBytes(String s) throws IOException

Writes a String as a sequence of bytes.

Parameters:

s − the String of bytes to be written

 writeChars

 public final void writeChars(String s) throws IOException

Writes a String as a sequence of chars.

Parameters:

s − the String of chars to be written

 writeUTF

 public final void writeUTF(String str) throws IOException

Writes a String in UTF format.

Parameters:

str − the String in UTF format

 size

 public final int size()

Returns the number of bytes written.

Returns:

the number of bytes written thus far.

All Packages Class Hierarchy This Package Previous Next Index

39

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.EOFException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.io.IOException
 |
 +−−−−java.io.EOFException

public class EOFException

extends IOException

Signals that and EOF has been reached unexpectedly during input.

See Also:

IOException, DataInputStream

 EOFException()

Constructs an EOFException with no detail message.

 EOFException(String)

Constructs an EOFException with the specified detail message.

 EOFException

 public EOFException()

Constructs an EOFException with no detail message. A detail message is a String

that describes this particular exception.

 EOFException

40

 public EOFException(String s)

Constructs an EOFException with the specified detail message. A detail message

is a String that describes this particular exception.

Parameters:

s − the detail message

All Packages Class Hierarchy This Package Previous Next Index

41

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.File

java.lang.Object
 |
 +−−−−java.io.File

public class File

extends Object

This class represents a file name of the host file system. The file name can be relative or

absolute. It must use the file name conventions of the host platform.

The intention is to provide an abstraction that deals with most of the system−dependent

file name features such as the separator character, root, device name, etc. Not all

features are currently fully implemented.

Note that whenever a file name or path is used it is assumed that the host’s file name

conventions are used.

 pathSeparator

The system dependent path separator string.

 pathSeparatorChar

The system dependent path separator character.

 separator

The system dependent file separator String.

 separatorChar

The system dependent file separator character.

 File(String)

Creates a File object.

 File(String, String)

Creates a File object from the specified directory.

 File(File, String)

Creates a File object (given a directory File object).

42

 canRead()

Returns a boolean indicating whether or not a readable file exists.

 canWrite()

Returns a boolean indicating whether or not a writable file exists.

 delete()

Deletes the specified file.

 equals(Object)

Compares this object against the specified object.

 exists()

Returns a boolean indicating whether or not a file exists.

 getAbsolutePath()

Gets the absolute path of the file.

 getName()

Gets the name of the file.

 getParent()

Gets the name of the parent directory.

 getPath()

Gets the path of the file.

 hashCode()

Computes a hashcode for the file.

 isAbsolute()

Returns a boolean indicating whether the file name is absolute.

 isDirectory()

Returns a boolean indicating whether or not a directory file exists.

 isFile()

Returns a boolean indicating whether or not a normal file exists.

 lastModified()

Returns the last modification time.

 length()

Returns the length of the file.

 list()

Lists the files in a directory.

 list(FilenameFilter)

Uses the specified filter to list files in a directory.

 mkdir()

Creates a directory and returns a boolean indicating the success of the creation.

 mkdirs()

Creates all directories in this path.

 renameTo(File)

Renames a file and returns a boolean indicating whether or not this method was

successful.

 toString()

Returns a String object representing this file’s path.

43

 separator

 public final static String separator

The system dependent file separator String.

 separatorChar

 public final static char separatorChar

The system dependent file separator character.

 pathSeparator

 public final static String pathSeparator

The system dependent path separator string.

 pathSeparatorChar

 public final static char pathSeparatorChar

The system dependent path separator character.

 File

 public File(String path)

Creates a File object.

Parameters:

path − the file path

Throws:NullPointerException

If the file path is equal to null.

 File

 public File(String path,
 String name)

Creates a File object from the specified directory.

Parameters:

path − the directory path

44

name − the file name

 File

 public File(File dir,
 String name)

Creates a File object (given a directory File object).

Parameters:

dir − the directory

name − the file name

 getName

 public String getName()

Gets the name of the file. This method does not include the directory.

Returns:

the file name.

 getPath

 public String getPath()

Gets the path of the file.

Returns:

the file path.

 getAbsolutePath

 public String getAbsolutePath()

Gets the absolute path of the file.

Returns:

the absolute file path.

 getParent

 public String getParent()

Gets the name of the parent directory.

Returns:

the parent directory, or null if one is not found.

45

 exists

 public boolean exists()

Returns a boolean indicating whether or not a file exists.

 canWrite

 public boolean canWrite()

Returns a boolean indicating whether or not a writable file exists.

 canRead

 public boolean canRead()

Returns a boolean indicating whether or not a readable file exists.

 isFile

 public boolean isFile()

Returns a boolean indicating whether or not a normal file exists.

 isDirectory

 public boolean isDirectory()

Returns a boolean indicating whether or not a directory file exists.

 isAbsolute

 public boolean isAbsolute()

Returns a boolean indicating whether the file name is absolute.

 lastModified

 public long lastModified()

Returns the last modification time. The return value should only be used to

compare modification dates. It is meaningless as an absolute time.

 length

 public long length()

Returns the length of the file.

46

 mkdir

 public boolean mkdir()

Creates a directory and returns a boolean indicating the success of the creation.

 renameTo

 public boolean renameTo(File dest)

Renames a file and returns a boolean indicating whether or not this method was

successful.

Parameters:

dest − the new file name

 mkdirs

 public boolean mkdirs()

Creates all directories in this path. This method returns true if all directories in

this path are created.

 list

 public String[] list()

Lists the files in a directory. Works only on directories.

Returns:

an array of file names. This list will include all files in the directory except

the equivalent of "." and ".." .

 list

 public String[] list(FilenameFilter filter)

Uses the specified filter to list files in a directory.

Parameters:

filter − the filter used to select file names

Returns:

the filter selected files in this directory.

See Also:

FilenameFilter

 delete

 public boolean delete()

Deletes the specified file. Returns true if the file could be deleted.

47

 hashCode

 public int hashCode()

Computes a hashcode for the file.

Overrides:

hashCode in class Object

 equals

 public boolean equals(Object obj)

Compares this object against the specified object.

Parameters:

obj − the object to compare with

Returns:

true if the objects are the same; false otherwise.

Overrides:

equals in class Object

 toString

 public String toString()

Returns a String object representing this file’s path.

Overrides:

toString in class Object

All Packages Class Hierarchy This Package Previous Next Index

48

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.FileDescriptor

java.lang.Object
 |
 +−−−−java.io.FileDescriptor

public final class FileDescriptor

extends Object

 err

Handle to standard error.

 in

Handle to standard input.

 out

Handle to standard output.

 FileDescriptor()

 valid()

Determines whether the file descriptor object is valid.

 in

 public final static FileDescriptor in

49

Handle to standard input.

 out

 public final static FileDescriptor out

Handle to standard output.

 err

 public final static FileDescriptor err

Handle to standard error.

 FileDescriptor

 public FileDescriptor()

 valid

 public boolean valid()

Determines whether the file descriptor object is valid.

All Packages Class Hierarchy This Package Previous Next Index

50

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.FileInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.FileInputStream

public class FileInputStream

extends InputStream

File input stream, can be constructed from a file descriptor or a file name.

See Also:

FileOutputStream, File

 FileInputStream(String)

Creates an input file with the specified system dependent file name.

 FileInputStream(File)

Creates an input file from the specified File object.

 FileInputStream(FileDescriptor)

 available()

Returns the number of bytes that can be read without blocking.

 close()

Closes the input stream.

 finalize()

Closes the stream when garbage is collected.

 getFD()

Returns the opaque file descriptor object associated with this stream.

 read()

Reads a byte of data.

 read(byte[])

51

Reads data into an array of bytes.

 read(byte[], int, int)

Reads data into an array of bytes.

 skip(long)

Skips n bytes of input.

 FileInputStream

 public FileInputStream(String name) throws FileNotFoundException

Creates an input file with the specified system dependent file name.

Parameters:

name − the system dependent file name

Throws:IOException

If the file is not found.

 FileInputStream

 public FileInputStream(File file) throws FileNotFoundException

Creates an input file from the specified File object.

Parameters:

file − the file to be opened for reading

Throws:IOException

If the file is not found.

 FileInputStream

 public FileInputStream(FileDescriptor fdObj)

 read

 public int read() throws IOException

Reads a byte of data. This method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

52

 read

 public int read(byte b[]) throws IOException

Reads data into an array of bytes. This method blocks until some input is

available.

Parameters:

b − the buffer into which the data is read

Returns:

the actual number of bytes read. −1 is returned if the end of stream is

reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 read

 public int read(byte b[],
 int off,
 int len) throws IOException

Reads data into an array of bytes. This method blocks until some input is

available.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read. −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 skip

 public long skip(long n) throws IOException

Skips n bytes of input.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Throws:IOException

If an I/O error has occurred.

Overrides:

skip in class InputStream

53

 available

 public int available() throws IOException

Returns the number of bytes that can be read without blocking.

Returns:

the number of available bytes, which is initially equal to the file size.

Overrides:

available in class InputStream

 close

 public void close() throws IOException

Closes the input stream. This method must be called to release any resources

associated with the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class InputStream

 getFD

 public final FileDescriptor getFD() throws IOException

Returns the opaque file descriptor object associated with this stream.

Returns:

the file descriptor.

 finalize

 protected void finalize() throws IOException

Closes the stream when garbage is collected.

Overrides:

finalize in class Object

All Packages Class Hierarchy This Package Previous Next Index

54

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.FileNotFoundException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.io.IOException
 |
 +−−−−java.io.FileNotFoundException

public class FileNotFoundException

extends IOException

Signals that a file was not found.

 FileNotFoundException()

Constructs a FileNotFoundException with no detail message.

 FileNotFoundException(String)

Constructs a FileNotFoundException with the specified detail message.

 FileNotFoundException

 public FileNotFoundException()

Constructs a FileNotFoundException with no detail message. A detail message is a

String that describes this particular exception.

 FileNotFoundException

 public FileNotFoundException(String s)

Constructs a FileNotFoundException with the specified detail message. A detail

message is a String that describes this particular exception.

55

Parameters:

s − the detail message

All Packages Class Hierarchy This Package Previous Next Index

56

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.FileOutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.FileOutputStream

public class FileOutputStream

extends OutputStream

File output stream, can be constructed from a file descriptor or a file name.

See Also:

FileInputStream, File

 FileOutputStream(String)

Creates an output file with the specified system dependent file name.

 FileOutputStream(File)

Creates an output file with the specified File object.

 FileOutputStream(FileDescriptor)

 close()

Closes the stream.

 finalize()

Closes the stream when garbage is collected.

 getFD()

Returns the file descriptor associated with this stream.

 write(int)

Writes a byte of data.

 write(byte[])

Writes an array of bytes.

 write(byte[], int, int)

57

Writes a sub array of bytes.

 FileOutputStream

 public FileOutputStream(String name) throws IOException

Creates an output file with the specified system dependent file name.

Parameters:

name − the system dependent file name

Throws:IOException

If the file is not found.

 FileOutputStream

 public FileOutputStream(File file) throws IOException

Creates an output file with the specified File object.

Parameters:

file − the file to be opened for reading

Throws:IOException

If the file is not found.

 FileOutputStream

 public FileOutputStream(FileDescriptor fdObj)

 write

 public void write(int b) throws IOException

Writes a byte of data. This method will block until the byte is actually written.

Parameters:

b − the byte to be written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 write

 public void write(byte b[]) throws IOException

58

Writes an array of bytes. Will block until the bytes are actually written.

Parameters:

b − the data to be written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 write

 public void write(byte b[],
 int off,
 int len) throws IOException

Writes a sub array of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 close

 public void close() throws IOException

Closes the stream. This method must be called to release any resources associated

with the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class OutputStream

 getFD

 public final FileDescriptor getFD() throws IOException

Returns the file descriptor associated with this stream.

Returns:

the file descriptor.

 finalize

 protected void finalize() throws IOException

Closes the stream when garbage is collected.

59

Overrides:

finalize in class Object

All Packages Class Hierarchy This Package Previous Next Index

60

All Packages Class Hierarchy This Package Previous Next Index

Interface java.io.FilenameFilter

public interface FilenameFilter

extends Object

A filter interface for file names.

See Also:

File

 accept(File, String)

Determines whether a name should be included in a file list.

 accept

 public abstract boolean accept(File dir,
 String name)

Determines whether a name should be included in a file list.

Parameters:

dir − the directory in which the file was found

name − the name of the file

Returns:

true if name should be included in file list; false otherwise.

All Packages Class Hierarchy This Package Previous Next Index

61

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.FilterInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.FilterInputStream

public class FilterInputStream

extends InputStream

Abstract class representing a filtered input stream of bytes. This class is the basis for

enhancing input stream functionality. It allows multiple input stream filters to be

chained together, each providing additional functionality.

 in

The actual input stream.

 FilterInputStream(InputStream)

Creates an input stream filter.

 available()

Returns the number of bytes that can be read without blocking.

 close()

Closes the input stream.

 mark(int)

Marks the current position in the input stream.

 markSupported()

Returns true if this stream type supports mark/reset.

 read()

Reads a byte.

62

 read(byte[])

Reads into an array of bytes.

 read(byte[], int, int)

Reads into an array of bytes.

 reset()

Repositions the stream to the last marked position.

 skip(long)

Skips bytes of input.

 in

 protected InputStream in

The actual input stream.

 FilterInputStream

 protected FilterInputStream(InputStream in)

Creates an input stream filter.

Parameters:

in − the input stream

 read

 public int read() throws IOException

Reads a byte. Will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 read

 public int read(byte b[]) throws IOException

63

Reads into an array of bytes. Blocks until some input is available.

Parameters:

b − the buffer into which the data is read

Returns:

the actual number of bytes read. Returns −1 when the end of the stream is

reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 read

 public int read(byte b[],
 int off,
 int len) throws IOException

Reads into an array of bytes. Blocks until some input is available. This method

should be overridden in a subclass for efficiency (the default implementation reads

1 byte at a time).

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read. Returns −1 when the end of the stream is

reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 skip

 public long skip(long n) throws IOException

Skips bytes of input.

Parameters:

n − bytes to be skipped

Returns:

actual number of bytes skipped

Throws:IOException

If an I/O error has occurred.

Overrides:

skip in class InputStream

 available

64

 public int available() throws IOException

Returns the number of bytes that can be read without blocking.

Returns:

the number of available bytes

Overrides:

available in class InputStream

 close

 public void close() throws IOException

Closes the input stream. Must be called to release any resources associated with

the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class InputStream

 mark

 public synchronized void mark(int readlimit)

Marks the current position in the input stream. A subsequent call to reset() will

reposition the stream at the last marked position so that subsequent reads will

re−read the same bytes. The stream promises to allow readlimit bytes to be read

before the mark position gets invalidated.

Parameters:

readlimit − the maximum limit of bytes allowed tobe read before the mark

position becomes invalid.

Overrides:

mark in class InputStream

 reset

 public synchronized void reset() throws IOException

Repositions the stream to the last marked position. If the stream has not been

marked, or if the mark has been invalidated, an IOException is thrown. Stream

marks are intended to be used in situations where you need to read ahead a little

to see what’s in the stream. Often this is most easily done by invoking some

general parser. If the stream is of the type handled by the parse, it just chugs

along happily. If the stream is not of that type, the parser should toss an exception

when it fails. If this happens within readlimit bytes, it allows the outer code to

reset the stream and try another parser.

Overrides:

reset in class InputStream

65

 markSupported

 public boolean markSupported()

Returns true if this stream type supports mark/reset.

Overrides:

markSupported in class InputStream

All Packages Class Hierarchy This Package Previous Next Index

66

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.FilterOutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.FilterOutputStream

public class FilterOutputStream

extends OutputStream

Abstract class representing a filtered output stream of bytes. This class is the basis for

enhancing output stream functionality. It allows multiple output stream filters to be

chained together, each providing additional functionality.

 out

The actual output stream.

 FilterOutputStream(OutputStream)

Creates an output stream filter.

 close()

Closes the stream.

 flush()

Flushes the stream.

 write(int)

Writes a byte.

 write(byte[])

Writes an array of bytes.

 write(byte[], int, int)

Writes a subarray of bytes.

67

 out

 protected OutputStream out

The actual output stream.

 FilterOutputStream

 public FilterOutputStream(OutputStream out)

Creates an output stream filter.

Parameters:

out − the output stream

 write

 public void write(int b) throws IOException

Writes a byte. Will block until the byte is actually written.

Parameters:

b − the byte

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 write

 public void write(byte b[]) throws IOException

Writes an array of bytes. Will block until the bytes are actually written.

Parameters:

b − the data to be written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

68

 write

 public void write(byte b[],
 int off,
 int len) throws IOException

Writes a subarray of bytes. To be efficient it should be overridden in a subclass.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 flush

 public void flush() throws IOException

Flushes the stream. This will write any buffered output bytes.

Throws:IOException

If an I/O error has occurred.

Overrides:

flush in class OutputStream

 close

 public void close() throws IOException

Closes the stream. This method must be called to release any resources associated

with the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class OutputStream

All Packages Class Hierarchy This Package Previous Next Index

69

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.IOException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.io.IOException

public class IOException

extends Exception

Signals that an I/O exception has occurred.

See Also:

InputStream, OutputStream

 IOException()

Constructs an IOException with no detail message.

 IOException(String)

Constructs an IOException with the specified detail message.

 IOException

 public IOException()

Constructs an IOException with no detail message. A detail message is a String

that describes this particular exception.

 IOException

 public IOException(String s)

70

Constructs an IOException with the specified detail message. A detail message is a

String that describes this particular exception.

Parameters:

s − the detail message

All Packages Class Hierarchy This Package Previous Next Index

71

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.InputStream

java.lang.Object
 |
 +−−−−java.io.InputStream

public class InputStream

extends Object

An abstract class representing an input stream of bytes. All InputStreams are based on

this class.

See Also:

OutputStream, FilterInputStream, BufferedInputStream, DataInputStream,

ByteArrayInputStream, PushbackInputStream

 InputStream()

 available()

Returns the number of bytes that can be read without blocking.

 close()

Closes the input stream.

 mark(int)

Marks the current position in the input stream.

 markSupported()

Returns a boolean indicating whether or not this stream type supports mark/reset.

 read()

Reads a byte of data.

 read(byte[])

Reads into an array of bytes.

 read(byte[], int, int)

Reads into an array of bytes.

 reset()

72

Repositions the stream to the last marked position.

 skip(long)

Skips n bytes of input.

 InputStream

 public InputStream()

 read

 public abstract int read() throws IOException

Reads a byte of data. This method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

 read

 public int read(byte b[]) throws IOException

Reads into an array of bytes. This method will block until some input is available.

Parameters:

b − the buffer into which the data is read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

 read

 public int read(byte b[],
 int off,
 int len) throws IOException

Reads into an array of bytes. This method will block until some input is available.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

73

len − the maximum number of bytes read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

 skip

 public long skip(long n) throws IOException

Skips n bytes of input.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Throws:IOException

If an I/O error has occurred.

 available

 public int available() throws IOException

Returns the number of bytes that can be read without blocking.

Returns:

the number of available bytes.

 close

 public void close() throws IOException

Closes the input stream. Must be called to release any resources associated with

the stream.

Throws:IOException

If an I/O error has occurred.

 mark

 public synchronized void mark(int readlimit)

Marks the current position in the input stream. A subsequent call to reset() will

reposition the stream at the last marked position so that subsequent reads will

re−read the same bytes. The stream promises to allow readlimit bytes to be read

before the mark position gets invalidated.

Parameters:

readlimit − the maximum limit of bytes allowed to be read before the mark

position becomes invalid.

74

 reset

 public synchronized void reset() throws IOException

Repositions the stream to the last marked position. If the stream has not been

marked, or if the mark has been invalidated, an IOException is thrown. Stream

marks are intended to be used in situations where you need to read ahead a little

to see what’s in the stream. Often this is most easily done by invoking some

general parser. If the stream is of the type handled by the parser, it just chugs

along happily. If the stream is not of that type, the parser should toss an exception

when it fails, which, if it happens within readlimit bytes, allows the outer code to

reset the stream and try another parser.

Throws:IOException

If the stream has not been marked or if the mark has been invalidated.

 markSupported

 public boolean markSupported()

Returns a boolean indicating whether or not this stream type supports mark/reset.

Returns:

true if this stream type supports mark/reset; false otherwise.

All Packages Class Hierarchy This Package Previous Next Index

75

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.InterruptedIOException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.io.IOException
 |
 +−−−−java.io.InterruptedIOException

public class InterruptedIOException

extends IOException

Signals that an I/O operation has been interrupted.

See Also:

InputStream, OutputStream

 bytesTransferred

Reports how many bytes had been transferred as part of the IO operation before it

was interrupted.

 InterruptedIOException()

Constructs an IOException with no detail message.

 InterruptedIOException(String)

Constructs an IOException with the specified detail message.

76

 bytesTransferred

 public int bytesTransferred

Reports how many bytes had been transferred as part of the IO operation before it

was interrupted.

 InterruptedIOException

 public InterruptedIOException()

Constructs an IOException with no detail message. A detail message is a String

that describes this particular exception.

 InterruptedIOException

 public InterruptedIOException(String s)

Constructs an IOException with the specified detail message. A detail message is a

String that describes this particular exception.

Parameters:

s − the detail message

All Packages Class Hierarchy This Package Previous Next Index

77

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.LineNumberInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.FilterInputStream
 |
 +−−−−java.io.LineNumberInputStream

public class LineNumberInputStream

extends FilterInputStream

An input stream that keeps track of line numbers.

 LineNumberInputStream(InputStream)

Constructs a new LineNumberInputStream initialized with the specified input

stream.

 available()

Returns the number of bytes that can be read without blocking.

 getLineNumber()

Returns the current line number.

 mark(int)

Marks the current position in the input stream.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads into an array of bytes.

 reset()

Repositions the stream to the last marked position.

 setLineNumber(int)

Sets the current line number.

 skip(long)

Skips n bytes of input.

78

 LineNumberInputStream

 public LineNumberInputStream(InputStream in)

Constructs a new LineNumberInputStream initialized with the specified input

stream.

Parameters:

in − the input stream

 read

 public int read() throws IOException

Reads a byte of data. The method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 read

 public int read(byte b[],
 int off,
 int len) throws IOException

Reads into an array of bytes. This method will blocks until some input is available.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 setLineNumber

79

 public void setLineNumber(int lineNumber)

Sets the current line number.

Parameters:

lineNumber − the line number to be set

 getLineNumber

 public int getLineNumber()

Returns the current line number.

 skip

 public long skip(long n) throws IOException

Skips n bytes of input.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Throws:IOException

If an I/O error has occurred.

Overrides:

skip in class FilterInputStream

 available

 public int available() throws IOException

Returns the number of bytes that can be read without blocking.

Returns:

the number of available bytes

Overrides:

available in class FilterInputStream

 mark

 public void mark(int readlimit)

Marks the current position in the input stream. A subsequent call to reset() will

reposition the stream at the last marked position so that subsequent reads will

re−read the same bytes. The stream promises to allow readlimit bytes to be read

before the mark position gets invalidated.

Parameters:

readlimit − the maximum limit of bytes allowed to be read before the mark

position becomes invalid.

Overrides:

mark in class FilterInputStream

80

 reset

 public void reset() throws IOException

Repositions the stream to the last marked position. If the stream has not been

marked, or if the mark has been invalidated, an IOException is thrown. Stream

marks are intended to be used in situations where you need to read ahead a little

to see what’s in the stream. Often this is most easily done by invoking some

general parser. If the stream is of the type handled by the parser, it just chugs

along happily. If the stream is not of that type, the parser should toss an exception

when it fails, which, if it happens within readlimit bytes, allows the outer code to

reset the stream and try another parser.

Overrides:

reset in class FilterInputStream

All Packages Class Hierarchy This Package Previous Next Index

81

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.OutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream

public class OutputStream

extends Object

Abstract class representing an output stream of bytes. All OutputStreams are based on

this class.

See Also:

InputStream, FilterOutputStream, BufferedOutputStream, DataOutputStream,

ByteArrayOutputStream

 OutputStream()

 close()

Closes the stream.

 flush()

Flushes the stream.

 write(int)

Writes a byte.

 write(byte[])

Writes an array of bytes.

 write(byte[], int, int)

Writes a sub array of bytes.

82

 OutputStream

 public OutputStream()

 write

 public abstract void write(int b) throws IOException

Writes a byte. This method will block until the byte is actually written.

Parameters:

b − the byte

Throws:IOException

If an I/O error has occurred.

 write

 public void write(byte b[]) throws IOException

Writes an array of bytes. This method will block until the bytes are actually

written.

Parameters:

b − the data to be written

Throws:IOException

If an I/O error has occurred.

 write

 public void write(byte b[],
 int off,
 int len) throws IOException

Writes a sub array of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

 flush

 public void flush() throws IOException

83

Flushes the stream. This will write any buffered output bytes.

Throws:IOException

If an I/O error has occurred.

 close

 public void close() throws IOException

Closes the stream. This method must be called to release any resources associated

with the stream.

Throws:IOException

If an I/O error has occurred.

All Packages Class Hierarchy This Package Previous Next Index

84

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.PipedInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.PipedInputStream

public class PipedInputStream

extends InputStream

PipedInputStream must be connected to a PipedOutputStream to be useful. A thread

reading from a PipedInputStream recieves data from a thread writing to the

PipedOutputStream it is connected to.

See Also:

PipedOutputStream

 PipedInputStream(PipedOutputStream)

Creates an input file from the specified PiledOutputStream.

 PipedInputStream()

Creates an input file that isn’t connected to anything (yet).

 close()

Closes the input stream.

 connect(PipedOutputStream)

Connects this input stream to a sender.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads into an array of bytes.

85

 PipedInputStream

 public PipedInputStream(PipedOutputStream src) throws IOException

Creates an input file from the specified PiledOutputStream.

Parameters:

src − the stream to connect to.

 PipedInputStream

 public PipedInputStream()

Creates an input file that isn’t connected to anything (yet). It must be connected to

a PipedOutputStream before being used.

 connect

 public void connect(PipedOutputStream src) throws IOException

Connects this input stream to a sender.

Parameters:

src − The OutputStream to connect to.

 read

 public synchronized int read() throws IOException

Reads a byte of data. This method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If the pipe is broken.

Overrides:

read in class InputStream

 read

 public synchronized int read(byte b[],
 int off,
 int len) throws IOException

Reads into an array of bytes. Blocks until some input is available.

86

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 close

 public void close() throws IOException

Closes the input stream. Must be called to release any resources associated with

the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class InputStream

All Packages Class Hierarchy This Package Previous Next Index

87

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.PipedOutputStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.PipedOutputStream

public class PipedOutputStream

extends OutputStream

Piped output stream, must be connected to a PipedInputStream. A thread reading from

a PipedInputStream receives data from a thread writing to the PipedOutputStream it is

connected to.

See Also:

PipedInputStream

 PipedOutputStream(PipedInputStream)

Creates an output file connected to the specified PipedInputStream.

 PipedOutputStream()

Creates an output file that isn’t connected to anything (yet).

 close()

Closes the stream.

 connect(PipedInputStream)

Connect this output stream to a receiver.

 write(int)

Write a byte.

 write(byte[], int, int)

Writes a sub array of bytes.

88

 PipedOutputStream

 public PipedOutputStream(PipedInputStream snk) throws IOException

Creates an output file connected to the specified PipedInputStream.

Parameters:

snk − The InputStream to connect to.

 PipedOutputStream

 public PipedOutputStream()

Creates an output file that isn’t connected to anything (yet). It must be connected

before being used.

 connect

 public void connect(PipedInputStream snk) throws IOException

Connect this output stream to a receiver.

Parameters:

snk − The InputStream to connect to.

 write

 public void write(int b) throws IOException

Write a byte. This method will block until the byte is actually written.

Parameters:

b − the byte to be written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 write

 public void write(byte b[],
 int off,
 int len) throws IOException

Writes a sub array of bytes.

89

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class OutputStream

 close

 public void close() throws IOException

Closes the stream. This method must be called to release any resources associated

with the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class OutputStream

All Packages Class Hierarchy This Package Previous Next Index

90

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.PrintStream

java.lang.Object
 |
 +−−−−java.io.OutputStream
 |
 +−−−−java.io.FilterOutputStream
 |
 +−−−−java.io.PrintStream

public class PrintStream

extends FilterOutputStream

This class implements an output stream that has additional methods for printing. You

can specify that the stream should be flushed every time a newline character is written.

The top byte of 16 bit characters is discarded.

Example:

 System.out.println("Hello world!");
 System.out.print("x = ");
 System.out.println(x);
 System.out.println("y = " + y);

 PrintStream(OutputStream)

Creates a new PrintStream.

 PrintStream(OutputStream, boolean)

Creates a new PrintStream, with auto flushing.

 checkError()

Flushes the print stream and returns whether or not there was an error on the

output stream.

 close()

91

Closes the stream.

 flush()

Flushes the stream.

 print(Object)

Prints an object.

 print(String)

Prints a String.

 print(char[])

Prints an array of characters.

 print(char)

Prints an character.

 print(int)

Prints an integer.

 print(long)

Prints a long.

 print(float)

Prints a float.

 print(double)

Prints a double.

 print(boolean)

Prints a boolean.

 println()

Prints a newline.

 println(Object)

Prints an object followed by a newline.

 println(String)

Prints a string followed by a newline.

 println(char[])

Prints an array of characters followed by a newline.

 println(char)

Prints a character followed by a newline.

 println(int)

Prints an integer followed by a newline.

 println(long)

Prints a long followed by a newline.

 println(float)

Prints a float followed by a newline.

 println(double)

Prints a double followed by a newline.

 println(boolean)

Prints a boolean followed by a newline.

 write(int)

Writes a byte.

 write(byte[], int, int)

Writes a sub array of bytes.

92

 PrintStream

 public PrintStream(OutputStream out)

Creates a new PrintStream.

Parameters:

out − the output stream

 PrintStream

 public PrintStream(OutputStream out,
 boolean autoflush)

Creates a new PrintStream, with auto flushing.

Parameters:

out − the output stream

autoflush − if true the stream automatically flushes its output when a

newline character is printed

 write

 public void write(int b)

Writes a byte. This method will block until the byte is actually written.

Parameters:

b − the byte

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class FilterOutputStream

 write

 public void write(byte b[],
 int off,
 int len)

Writes a sub array of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

93

Throws:IOException

If an I/O error has occurred.

Overrides:

write in class FilterOutputStream

 flush

 public void flush()

Flushes the stream. This will write any buffered output bytes.

Overrides:

flush in class FilterOutputStream

 close

 public void close()

Closes the stream.

Overrides:

close in class FilterOutputStream

 checkError

 public boolean checkError()

Flushes the print stream and returns whether or not there was an error on the

output stream. Errors are cumulative; once the print stream encounters an error

this routine will continue to return true on all successive calls.

Returns:

true if the print stream has ever encountered an error on the output stream.

 print

 public void print(Object obj)

Prints an object.

Parameters:

obj − the object to be printed

 print

 public synchronized void print(String s)

Prints a String.

Parameters:

s − the String to be printed

 print

94

 public synchronized void print(char s[])

Prints an array of characters.

Parameters:

s − the array of chars to be printed

 print

 public void print(char c)

Prints an character.

Parameters:

c − the character to be printed

 print

 public void print(int i)

Prints an integer.

Parameters:

i − the integer to be printed

 print

 public void print(long l)

Prints a long.

Parameters:

l − the long to be printed.

 print

 public void print(float f)

Prints a float.

Parameters:

f − the float to be printed

 print

 public void print(double d)

Prints a double.

Parameters:

d − the double to be printed

 print

 public void print(boolean b)

95

Prints a boolean.

Parameters:

b − the boolean to be printed

 println

 public void println()

Prints a newline.

 println

 public synchronized void println(Object obj)

Prints an object followed by a newline.

Parameters:

obj − the object to be printed

 println

 public synchronized void println(String s)

Prints a string followed by a newline.

Parameters:

s − the String to be printed

 println

 public synchronized void println(char s[])

Prints an array of characters followed by a newline.

Parameters:

s − the array of characters to be printed

 println

 public synchronized void println(char c)

Prints a character followed by a newline.

Parameters:

c − the character to be printed

 println

 public synchronized void println(int i)

Prints an integer followed by a newline.

96

Parameters:

i − the integer to be printed

 println

 public synchronized void println(long l)

Prints a long followed by a newline.

Parameters:

l − the long to be printed

 println

 public synchronized void println(float f)

Prints a float followed by a newline.

Parameters:

f − the float to be printed

 println

 public synchronized void println(double d)

Prints a double followed by a newline.

Parameters:

d − the double to be printed

 println

 public synchronized void println(boolean b)

Prints a boolean followed by a newline.

Parameters:

b − the boolean to be printed

All Packages Class Hierarchy This Package Previous Next Index

97

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.PushbackInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.FilterInputStream
 |
 +−−−−java.io.PushbackInputStream

public class PushbackInputStream

extends FilterInputStream

An input stream that has a 1 byte push back buffer.

 pushBack

Push back character.

 PushbackInputStream(InputStream)

Creates a PushbackInputStream.

 available()

Returns the number of bytes that can be read.

 markSupported()

Returns true if this stream type supports mark/reset.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads into an array of bytes.

 unread(int)

Pushes back a character.

98

 pushBack

 protected int pushBack

Push back character.

 PushbackInputStream

 public PushbackInputStream(InputStream in)

Creates a PushbackInputStream.

Parameters:

in − the input stream

 read

 public int read() throws IOException

Reads a byte of data. This method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 read

 public int read(byte bytes[],
 int offset,
 int length) throws IOException

Reads into an array of bytes. This method blocks until some input is available.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

99

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class FilterInputStream

 unread

 public void unread(int ch) throws IOException

Pushes back a character.

Parameters:

ch − the character to push back.

Throws:IOException

If an attempt to push back more than one character is made.

 available

 public int available() throws IOException

Returns the number of bytes that can be read. without blocking.

Overrides:

available in class FilterInputStream

 markSupported

 public boolean markSupported()

Returns true if this stream type supports mark/reset.

Overrides:

markSupported in class FilterInputStream

All Packages Class Hierarchy This Package Previous Next Index

100

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.RandomAccessFile

java.lang.Object
 |
 +−−−−java.io.RandomAccessFile

public class RandomAccessFile

extends Object

implements DataOutput, DataInput

Random access files can be constructed from file descriptors, file names, or file objects.

This class provides a sense of security by offering methods that allow specified mode

accesses of read−only or read−write to files.

 RandomAccessFile(String, String)

Creates a RandomAccessFile with the specified system dependent file name and

the specified mode.

 RandomAccessFile(File, String)

Creates a RandomAccessFile from a specified File object and mode ("r" or "rw").

 close()

Closes the file.

 getFD()

Returns the opaque file descriptor object.

 getFilePointer()

Returns the current location of the file pointer.

 length()

Returns the length of the file.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads a sub array as a sequence of bytes.

 read(byte[])

Reads data into an array of bytes.

101

 readBoolean()

Reads a boolean.

 readByte()

Reads a byte.

 readChar()

Reads a 16 bit char.

 readDouble()

Reads a 64 bit double.

 readFloat()

Reads a 32 bit float.

 readFully(byte[])

Reads bytes, blocking until all bytes are read.

 readFully(byte[], int, int)

Reads bytes, blocking until all bytes are read.

 readInt()

Reads a 32 bit int.

 readLine()

Reads a line terminated by a ’\n’ or EOF.

 readLong()

Reads a 64 bit long.

 readShort()

Reads 16 bit short.

 readUTF()

Reads a UTF formatted String.

 readUnsignedByte()

Reads an unsigned 8 bit byte.

 readUnsignedShort()

Reads 16 bit short.

 seek(long)

Sets the file pointer to the specified absolute position.

 skipBytes(int)

 write(int)

Writes a byte of data.

 write(byte[])

Writes an array of bytes.

 write(byte[], int, int)

Wrotes a sub array of bytes.

 writeBoolean(boolean)

Writes a boolean.

 writeByte(int)

Writes a byte.

 writeBytes(String)

Writes a String as a sequence of bytes.

 writeChar(int)

Writes a character.

 writeChars(String)

Writes a String as a sequence of chars.

 writeDouble(double)

 writeFloat(float)

102

 writeInt(int)

Writes an integer.

 writeLong(long)

Writes a long.

 writeShort(int)

Writes a short.

 writeUTF(String)

Writes a String in UTF format.

 RandomAccessFile

 public RandomAccessFile(String name,
 String mode) throws IOException

Creates a RandomAccessFile with the specified system dependent file name and

the specified mode. Mode "r" is for read−only and mode "rw" is for read+write.

Parameters:

name − the system dependent file name

mode − the access mode

Throws:IOException

If an I/O error has occurred.

 RandomAccessFile

 public RandomAccessFile(File file,
 String mode) throws IOException

Creates a RandomAccessFile from a specified File object and mode ("r" or "rw").

Parameters:

file − the file object

mode − the access mode

 getFD

 public final FileDescriptor getFD() throws IOException

Returns the opaque file descriptor object.

Returns:

the file descriptor.

 read

103

 public int read() throws IOException

Reads a byte of data. This method will block if no input is available.

Returns:

the byte read, or −1 if the end of the stream is reached.

Throws:IOException

If an I/O error has occurred.

 read

 public int read(byte b[],
 int off,
 int len) throws IOException

Reads a sub array as a sequence of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

 read

 public int read(byte b[]) throws IOException

Reads data into an array of bytes. This method blocks until some input is

available.

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

 readFully

 public final void readFully(byte b[]) throws IOException

Reads bytes, blocking until all bytes are read.

Parameters:

b − the buffer into which the data is read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

 readFully

104

 public final void readFully(byte b[],
 int off,
 int len) throws IOException

Reads bytes, blocking until all bytes are read.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read, −1 is returned when the end of the stream

is reached.

Throws:IOException

If an I/O error has occurred.

 skipBytes

 public int skipBytes(int n) throws IOException

 write

 public void write(int b) throws IOException

Writes a byte of data. This method will block until the byte is actually written.

Parameters:

b − the byte to be written

Throws:IOException

If an I/O error has occurred.

 write

 public void write(byte b[]) throws IOException

Writes an array of bytes. Will block until the bytes are actually written.

Parameters:

b − the data to be written

Throws:IOException

If an I/O error has occurred.

 write

 public void write(byte b[],
 int off,
 int len) throws IOException

Wrotes a sub array of bytes.

Parameters:

b − the data to be written

off − the start offset in the data

105

len − the number of bytes that are written

Throws:IOException

If an I/O error has occurred.

 getFilePointer

 public long getFilePointer() throws IOException

Returns the current location of the file pointer.

 seek

 public void seek(long pos) throws IOException

Sets the file pointer to the specified absolute position.

Parameters:

pos − the absolute position

 length

 public long length() throws IOException

Returns the length of the file.

 close

 public void close() throws IOException

Closes the file.

Throws:IOException

If an I/O error has occurred.

 readBoolean

 public final boolean readBoolean() throws IOException

Reads a boolean.

 readByte

 public final byte readByte() throws IOException

Reads a byte.

 readUnsignedByte

 public final int readUnsignedByte() throws IOException

Reads an unsigned 8 bit byte.

106

Returns:

the 8 bit byte read.

 readShort

 public final short readShort() throws IOException

Reads 16 bit short.

Returns:

the read 16 bit short.

 readUnsignedShort

 public final int readUnsignedShort() throws IOException

Reads 16 bit short.

Returns:

the read 16 bit short.

 readChar

 public final char readChar() throws IOException

Reads a 16 bit char.

Returns:

the read 16 bit char.

 readInt

 public final int readInt() throws IOException

Reads a 32 bit int.

Returns:

the read 32 bit integer.

 readLong

 public final long readLong() throws IOException

Reads a 64 bit long.

Returns:

the read 64 bit long.

 readFloat

 public final float readFloat() throws IOException

Reads a 32 bit float.

Returns:

107

the read 32 bit float.

 readDouble

 public final double readDouble() throws IOException

Reads a 64 bit double.

Returns:

the read 64 bit double.

 readLine

 public final String readLine() throws IOException

Reads a line terminated by a ’\n’ or EOF.

 readUTF

 public final String readUTF() throws IOException

Reads a UTF formatted String.

 writeBoolean

 public final void writeBoolean(boolean v) throws IOException

Writes a boolean.

Parameters:

v − the boolean value

 writeByte

 public final void writeByte(int v) throws IOException

Writes a byte.

Parameters:

v − the byte

 writeShort

 public final void writeShort(int v) throws IOException

Writes a short.

Parameters:

v − the short

 writeChar

 public final void writeChar(int v) throws IOException

108

Writes a character.

Parameters:

v − the char

 writeInt

 public final void writeInt(int v) throws IOException

Writes an integer.

Parameters:

v − the integer

 writeLong

 public final void writeLong(long v) throws IOException

Writes a long.

Parameters:

v − the long

 writeFloat

 public final void writeFloat(float v) throws IOException

 writeDouble

 public final void writeDouble(double v) throws IOException

 writeBytes

 public final void writeBytes(String s) throws IOException

Writes a String as a sequence of bytes.

Parameters:

s − the String

 writeChars

 public final void writeChars(String s) throws IOException

Writes a String as a sequence of chars.

Parameters:

s − the String

 writeUTF

 public final void writeUTF(String str) throws IOException

109

Writes a String in UTF format.

Parameters:

str − the String

All Packages Class Hierarchy This Package Previous Next Index

110

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.SequenceInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.SequenceInputStream

public class SequenceInputStream

extends InputStream

Converts a sequence of input streams into an InputStream.

 SequenceInputStream(Enumeration)

Constructs a new SequenceInputStream initialized to the specified list.

 SequenceInputStream(InputStream, InputStream)

Constructs a new SequenceInputStream initialized to the two specified input

streams.

 close()

Closes the input stream; flipping to the next stream, if an EOF is reached.

 read()

Reads a stream, and upon reaching an EOF, flips to the next stream.

 read(byte[], int, int)

Reads data into an array of bytes, and upon reaching an EOF, flips to the next

stream.

 SequenceInputStream

 public SequenceInputStream(Enumeration e)

111

Constructs a new SequenceInputStream initialized to the specified list.

Parameters:

e − the list

 SequenceInputStream

 public SequenceInputStream(InputStream s1,
 InputStream s2)

Constructs a new SequenceInputStream initialized to the two specified input

streams.

Parameters:

s1 − the first input stream

s2 − the second input stream

 read

 public int read() throws IOException

Reads a stream, and upon reaching an EOF, flips to the next stream.

Overrides:

read in class InputStream

 read

 public int read(byte buf[],
 int pos,
 int len) throws IOException

Reads data into an array of bytes, and upon reaching an EOF, flips to the next

stream.

Parameters:

buf − the buffer into which the data is read

pos − the start position of the data

len − the maximum number of bytes read

Throws:IOException

If an I/O error has occurred.

Overrides:

read in class InputStream

 close

 public void close() throws IOException

Closes the input stream; flipping to the next stream, if an EOF is reached. This

112

method must be called to release any resources associated with the stream.

Throws:IOException

If an I/O error has occurred.

Overrides:

close in class InputStream

All Packages Class Hierarchy This Package Previous Next Index

113

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.StreamTokenizer

java.lang.Object
 |
 +−−−−java.io.StreamTokenizer

public class StreamTokenizer

extends Object

A class to turn an input stream into a stream of tokens. There are a number of methods

that define the lexical syntax of tokens.

 TT_EOF

The End−of−file token.

 TT_EOL

The End−of−line token.

 TT_NUMBER

The number token.

 TT_WORD

The word token.

 nval

The number value.

 sval

The Stream value.

 ttype

The type of the last token returned.

 StreamTokenizer(InputStream)

Creates a stream tokenizer that parses the specified input stream.

114

 commentChar(int)

Specifies that this character starts a single line comment.

 eolIsSignificant(boolean)

If the flag is true, end−of−lines are significant (TT_EOL will be returned by

nexttoken).

 lineno()

Return the current line number.

 lowerCaseMode(boolean)

Examines a boolean to decide whether TT_WORD tokens are forced to be lower

case.

 nextToken()

Parses a token from the input stream.

 ordinaryChar(int)

Specifies that this character is ’ordinary’: it removes any significance as a word,

comment, string, whitespace or number character.

 ordinaryChars(int, int)

Specifies that characters in this range are ’ordinary’.

 parseNumbers()

Specifies that numbers should be parsed.

 pushBack()

Pushes back a stream token.

 quoteChar(int)

Specifies that matching pairs of this character delimit String constants.

 resetSyntax()

Resets the syntax table so that all characters are special.

 slashSlashComments(boolean)

If the flag is true, recognize C++ style(//) comments.

 slashStarComments(boolean)

If the flag is true, recognize C style(/*) comments.

 toString()

Returns the String representation of the stream token.

 whitespaceChars(int, int)

Specifies that characters in this range are whitespace characters.

 wordChars(int, int)

Specifies that characters in this range are word characters.

 ttype

 public int ttype

The type of the last token returned. It’s value will either be one of the following

TT_* constants, or a single character. For example, if ’+’ is encountered and is not

115

a valid word character, ttype will be ’+’

 TT_EOF

 public final static int TT_EOF

The End−of−file token.

 TT_EOL

 public final static int TT_EOL

The End−of−line token.

 TT_NUMBER

 public final static int TT_NUMBER

The number token. This value is in nval.

 TT_WORD

 public final static int TT_WORD

The word token. This value is in sval.

 sval

 public String sval

The Stream value.

 nval

 public double nval

The number value.

 StreamTokenizer

 public StreamTokenizer(InputStream I)

Creates a stream tokenizer that parses the specified input stream. By default, it

recognizes numbers, Strings quoted with single and double quotes, and all the

alphabetics.

116

Parameters:

I − the input stream

 resetSyntax

 public void resetSyntax()

Resets the syntax table so that all characters are special.

 wordChars

 public void wordChars(int low,
 int hi)

Specifies that characters in this range are word characters.

Parameters:

low − the low end of the range

hi − the high end of the range

 whitespaceChars

 public void whitespaceChars(int low,
 int hi)

Specifies that characters in this range are whitespace characters.

Parameters:

low − the low end of the range

hi − the high end of the range

 ordinaryChars

 public void ordinaryChars(int low,
 int hi)

Specifies that characters in this range are ’ordinary’. Ordinary characters mean

that any significance as words, comments, strings, whitespaces or number

characters are removed. When these characters are encountered by the parser,

they return a ttype equal to the character.

Parameters:

low − the low end of the range

hi − the high end of the range

 ordinaryChar

 public void ordinaryChar(int ch)

117

Specifies that this character is ’ordinary’: it removes any significance as a word,

comment, string, whitespace or number character. When encountered by the

parser, it returns a ttype equal to the character.

Parameters:

ch − the character

 commentChar

 public void commentChar(int ch)

Specifies that this character starts a single line comment.

Parameters:

ch − the character

 quoteChar

 public void quoteChar(int ch)

Specifies that matching pairs of this character delimit String constants. When a

String constant is recognized, ttype will be the character that delimits the String,

and sval will have the body of the String.

Parameters:

ch − the character

 parseNumbers

 public void parseNumbers()

Specifies that numbers should be parsed. This method accepts double precision

floating point numbers and returns a ttype of TT_NUMBER with the value in

nval.

 eolIsSignificant

 public void eolIsSignificant(boolean flag)

If the flag is true, end−of−lines are significant (TT_EOL will be returned by

nexttoken). If false, they will be treated as whitespace.

 slashStarComments

 public void slashStarComments(boolean flag)

If the flag is true, recognize C style(/*) comments.

 slashSlashComments

 public void slashSlashComments(boolean flag)

118

If the flag is true, recognize C++ style(//) comments.

 lowerCaseMode

 public void lowerCaseMode(boolean fl)

Examines a boolean to decide whether TT_WORD tokens are forced to be lower

case.

Parameters:

fl − the boolean flag

 nextToken

 public int nextToken() throws IOException

Parses a token from the input stream. The return value is the same as the value of

ttype. Typical clients of this class first set up the syntax tables and then sit in a

loop calling nextToken to parse successive tokens until TT_EOF is returned.

 pushBack

 public void pushBack()

Pushes back a stream token.

 lineno

 public int lineno()

Return the current line number.

 toString

 public String toString()

Returns the String representation of the stream token.

Overrides:

toString in class Object

All Packages Class Hierarchy This Package Previous Next Index

119

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.StringBufferInputStream

java.lang.Object
 |
 +−−−−java.io.InputStream
 |
 +−−−−java.io.StringBufferInputStream

public class StringBufferInputStream

extends InputStream

This class implements a String buffer that can be used as an InputStream.

 buffer

The buffer where data is stored.

 count

The number of characters to use in the buffer.

 pos

The position in the buffer.

 StringBufferInputStream(String)

Creates an StringBufferInputStream from the specified array of bytes.

 available()

Returns the number of available bytes in the buffer.

 read()

Reads a byte of data.

 read(byte[], int, int)

Reads into an array of bytes.

 reset()

Resets the buffer to the beginning.

120

 skip(long)

Skips n bytes of input.

 buffer

 protected String buffer

The buffer where data is stored.

 pos

 protected int pos

The position in the buffer.

 count

 protected int count

The number of characters to use in the buffer.

 StringBufferInputStream

 public StringBufferInputStream(String s)

Creates an StringBufferInputStream from the specified array of bytes.

Parameters:

s − the input buffer (not copied)

 read

 public synchronized int read()

Reads a byte of data.

Returns:

the byte read, or −1 if the end of the stream is reached.

Overrides:

121

read in class InputStream

 read

 public synchronized int read(byte b[],
 int off,
 int len)

Reads into an array of bytes.

Parameters:

b − the buffer into which the data is read

off − the start offset of the data

len − the maximum number of bytes read

Returns:

the actual number of bytes read; −1 is returned when the end of the stream

is reached.

Overrides:

read in class InputStream

 skip

 public synchronized long skip(long n)

Skips n bytes of input.

Parameters:

n − the number of bytes to be skipped

Returns:

the actual number of bytes skipped.

Overrides:

skip in class InputStream

 available

 public synchronized int available()

Returns the number of available bytes in the buffer.

Overrides:

available in class InputStream

 reset

 public synchronized void reset()

Resets the buffer to the beginning.

Overrides:

reset in class InputStream

122

All Packages Class Hierarchy This Package Previous Next Index

123

All Packages Class Hierarchy This Package Previous Next Index

Class java.io.UTFDataFormatException

java.lang.Object
 |
 +−−−−java.lang.Throwable
 |
 +−−−−java.lang.Exception
 |
 +−−−−java.io.IOException
 |
 +−−−−java.io.UTFDataFormatException

public class UTFDataFormatException

extends IOException

Signals that a malformed UTF−8 string has been read in a DataInput stream.

See Also:

IOException, DataInput

 UTFDataFormatException()

Constructs an UTFDataFormatException with no detail message.

 UTFDataFormatException(String)

Constructs an UTFDataFormatException with the specified detail message.

 UTFDataFormatException

 public UTFDataFormatException()

Constructs an UTFDataFormatException with no detail message. A detail

message is a String that describes this particular exception.

 UTFDataFormatException

124

 public UTFDataFormatException(String s)

Constructs an UTFDataFormatException with the specified detail message. A

detail message is a String that describes this particular exception.

Parameters:

s − the detail message

All Packages Class Hierarchy This Package Previous Next Index

